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Introduction 

Several physiological control systems are responsible to the  

changes of heart period on a beat-to-beat basis. 

 

These control mechanisms interact each other and might even  

compete 

 

The visible result is the richness of dynamics of heart period  

when observed on a beat-to-beat basis (i.e. the complexity of 

heart period series) 

 

Some observations suggest that measuring complexity of heart  

period might provide useful clinical information (e.g. it decreases 

with age and disease)  



Primary aim 

To monitor complexity of heart period dynamics via  

entropy-based approaches  



Definition of heart period variability series  

ECG 

RR=RR(i), i=1,…,N 



Short-term heart period variability 

Heart period series exhibits non random fluctuations when observed  

over a temporal scale of few minutes 

 

These fluctuations are referred to as short-term heart period variability  



Autonomic regulation of heart period 

Saul JP et al, Am J Physiol, 256:H153-H161, 1989 

Heart rate variability is under control of the autonomic nervous system 



Assessing autonomic balance via spectral analysis 

Monitoring heart rate variability has become very popular  

to assess balancing between parasympathetic and sympathetic  

regulation 
LF HF 

LF band: 0.04f0.15 Hz 

HF band: 0.15<f0.5 Hz 
LF/HF = 

Power in the LF band 

Power in the HF band 

Akselrod S et al, Science, 213:220-223, 1981 

Malliani A et al, Circulation, 84:482-492, 1991 Task Force, Circulation 93:1043-1065, 1996   



Drawbacks of the evaluation of the autonomic  

balance based on spectral analysis  

1) LF/HF index is based on a linear analysis 

 

 

2) LF/HF index depends on the definition of the limits of the  

      frequency bands  

 

 

3) The numerator and denominator of the LF/HF index are not 

     independent  

 

 

4) LF/HF index loses his meaning when respiration drops in the 

    LF band 



Secondary aim  

Are entropy-based complexity indexes helpful to infer  

the state of the autonomic nervous system controlling  

heart rate? 



Short-term heart period variability complexity  

and autonomic nervous system 

Tulppo MP et al, Am J Physiol, 280:H1081-H1087, 2001 



Porta A et al, IEEE Trans Biomed Eng, 54:94-106, 2007 

Short-term heart period variability complexity  

and autonomic nervous system 



Aims  

1) To verify whether complexity indexes based on entropy rates can 

      track the gradual increase of sympathetic modulation (and the  

      concomitant decrease of vagal one) produced by graded head-up 

      tilt test 

 

 

2) To compare well-established estimates of entropy rates on the  

      same experimental protocol 

 

 

3)   To understand whether normalization of entropy rate with respect  

      to an index of static complexity may bring additional information  



Pattern definition 

Given the series RR = RR(i), i=1,...,N  

Pattern:  RRL(i) = (RR(i),RR(i-1),...,RR(i-L+1)) 

A pattern is a point in a L-dimensional embedding space 

With L=3 

RR(i) 

RR(i-1) 

RR(i-2) 

RRL=3(i

) 



Shannon entropy (SE) and 

conditional entropy (CE) 

SE(L) = -Sp(RRL(i)) 
.

 log(p(RRL(i))) 

     Shannon entropy (SE) 

     Conditional entropy (CE) 

CE(L) = SE(L)-SE(L-1) 



Functions playing a role equivalent to the  

conditional entropy 

1)  Approximate entropy (ApEn) 

 

 

 

2)  Sample entropy (SampEn) 

 

 

 

3)  Corrected conditional entropy (CCE) 

Pincus SM, Chaos, 5:110-117, 1995 

Richman JS and Moorman JR, Am J Physiol, 278:H2039-H2049, 2000 

Porta A et al , Biol Cybern, 78:71-78, 1998 



Approximate entropy (ApEn) 



Pattern similarity within a tolerance r 

RRL(j) is similar to RRL(i) within a tolerance r  

if they RRL(j) is closer than r to RRL(i)   

RR(i) 

RR(i-1) 

RR(i-2) 

r  RRL(i) 

RRL(j) 

With L=3 

According to the Euclidean norm, RRL(j) is similar to RRL(i) 

if RRL(j) lies in a hyper-sphere of radius r centered in RRL(i) 



where  

 

Ci(L,r) =  

 

Ni(L,r) = number of points (i.e. patterns) similar to RRL(i)  

                within a tolerance r   

Approximate entropy (ApEn) 

  PS(L,r) = -               S log(Ci(L,r)) 
1 

N-L+1 i=1 

N-L+1 

ApEn(L,r) = PS(L,r) - PS(L-1,r) 

Ni(L,r)  

N-L+1  

Pincus SM, Chaos, 5:110-117, 1995 



Self-matching  

Self-matching is a consequence of the trivial observation that 

RRL(j) is always at distance smaller than r from RRL(i) when i=j 

Self-matching occurs when the unique pattern in the  

hyper-sphere of radius r centered around RRL(i) is RRL(i)  

RR(i) 

RR(i-1) 

RR(i-2) 

r  RRL(i) 

With L=3 

RRL(i) is a “self-match” if Ni(L,r)=1 



Self-matching and approximate entropy 

 

              ≤Ci(L,r) ≤1  
1 

N-L+1 

log(0) is prevented 

 

When calculating    PS(L,r) = -               S log(Ci(L,r)) 
1 

N-L+1 i=1 

N-L+1 

self-matching is allowed 



Two factors produce the important bias of ApEn 

Bias of the approximate entropy 

1)   due to the spreading of the  

      dynamics in the phase space 

 

               Ni(L,r)≤Ni(L-1,r) 

Ni(L,r)  1 while increasing L 

2)   due to self-matching  

 

 

          Ni(L,r)1 



Bias of the approximate entropy 

Since Ni(L,r)  1 while increasing L 

   PS(L,r)  PS(L-1,r)  

thus producing a bias toward regularity  

ApEn(L,r) = PS(L,r) - PS(L-1,r)  0 



Approximate entropy over a realization of a 

Gaussian white noise 

r=0.2.SD  N=300 

ApEn(L=2,r,N) 

76.5% 

The high percentage of “self-matches” even at small L  

makes mandatory their optimal management 



Corrected approximate 

entropy (CApEn) 



Correction of the approximate entropy: 

the corrected ApEn (CApEn) 

ApEn(L,r) = PS(L,r) - PS(L-1,r) =   -                S log 
1 

N-L+1 i=1 

N-L+1 
Ni(L,r) 

Ni(L-1,r) 

Porta A et al, J Appl Physiol, 103:1143-1149, 2007  

Correction: 

 

When Ni(L,r)=1 or Ni(L-1,r)=1, then                   is set to   
Ni(L,r) 

Ni(L-1,r) 

1 

N-L+1 



Sample entropy (SampEn) 



Sample entropy (SampEn) 

  RM(L,r) = - log (              S Ci(L,r)) 
1 

N-L+1 i=1 

N-L+1 

SampEn(L,r) = RM(L,r) - RM(L-1,r) 

where  

 

Ci(L,r) =  

 

Ni(L,r) = number of points (i.e. patterns) that can be found at  

               distance smaller than r from RRL(i)   

Ni(L,r)  

N-L+1  

Richman JS and Moorman JR, Am J Physiol, 278:H2039-H2049, 2000 



Self-matching and sample entropy 

When calculating SampEn(L,r) “self-matches” are excluded  

SampEn(L,r) = RM(L,r) - RM(L-1,r) =   - log    i=1 

N-L+1 

             S Ni(L,r)  

i=1 

N-L+1 

             S Ni(L-1,r)  

             Ni(L,r) and Ni(L-1,r) can be 0  



Corrected conditional entropy 

(CCE) 



Toward an approximation of Shannon entropy and 

conditional entropy: uniform quantization 

RR(i), i=1,...,N with RR(i)  R 

RRq(i), i=1,...,N with RRq(i)  I 

0RRq(i)q-1 

q=6 with ε =  
max(RR)-min(RR) 

q 

ε  



Estimation of Shannon entropy and 

conditional entropy 

SE(L,q) = -Sp(RRL
q(i)) 

.
 log(p(RRL

q(i))) 

     Shannon entropy (SE) 

     Conditional entropy (CE) 

Given the quantized series RRq = RRq(i), i=1,...,N and  

built the series of quantized patterns RRL
q = RRL

q(i), i=L,...,N  

with  RRL
q(i) = (RRq(i),RRq(i-1),...,RRq(i-L+1)) 

CE(L,q) = SE(L,q)-SE(L-1,q) 



Estimate of the conditional entropy (CE) 

q=6 



Effects of uniform quantization procedure 



Definition of “single” patterns 

Let’s define as “single” the quantized pattern RRL
q(i) such  

that it is alone in an hypercube of the partition of the phase  

space imposed by uniform quantization  



Bias of the estimate of the conditional entropy 

The contribution of each “single” pattern to Shannon entropy is 

-               log(             ) 
1 

N-L+1 

1 

N-L+1 
-       log(      ) 

1 

N 
≈ 

1 

N 

Since it N>>L, it is constant with L and, thus, its contribution 

to the conditional entropy is 0 

“Single” patterns do not contribute to CE 



Since the percentage of “single” patterns increases as a  

function of  L, the conditional entropy decreases to 0 

Bias of the estimate of the conditional 

entropy and single patterns 



Corrected conditional entropy (CCE) 

CCE(L,q) = CE(L,q) + SE(L=1,q) 
.

 fraction(L) 

CCE(L,q) 

CE(L,q) 
SE(L=1,q) . perc(L) 

with 0 perc(L)1 

Porta A et al , Biol Cybern, 78:71-78, 1998 



Experimental protocol 

17 healthy young humans (age from 21 to 54, median=28) 

We recorded ECG (lead II) and respiration (thoracic belt) at 1 kHz 

during head-up tilt (T)  

 

 

 

 

 

 

 

 

Each T session (10 min) was always preceded by a session (7 min)  

at rest (R) and followed by a recovery period (3 min) 

Table angles were randomly chosen  

within the set {15,30,45,60,75,90}  

http://www.healthyhearts.com/10f1.gif


Setting for calculation of the complexity indexes 

1) Approximate entropy, ApEn(L,r,N) and Corrected  

      Approximate entropy, CApEn(L,r,N)  

 

                         L-1=2; r=0.2.SD; N=250 

 

 

2)   Sample entropy, SampEn(L,r,N) 

 

                         L-1=2; r=0.2.SD; N=250 

 

 

3)   Corrected conditional entropy, CCE(L,q,N) 

 

                            L=Lmin; q=6; N=250  

CIPS 

CCIPS 

CIRM 

CIP 



Normalized complexity indexes 

CIPS 

 

 

CCIPS 

 

 

 

CIRM 

 

 

 

CIP 

 NCIPS =  
PS(L=1,r)  

CIPS  

 NCCIPS =  
PS(L=1,r)  

CCIPS  

 NCIRM =  
RM(L=1,r)  

CIRM  

 NCIP =  
SE(L=1,)  

CIP  



Entropy-based complexity indexes during graded  

head-up tilt 

Values are expressed as median (first quartile – third quartile).  

CI = complexity index; NCI = normalized CI; CCI = corrected CI; NCCI = normalized CCI; subscripts PS, RM, P 

(Pincus, Richman and Moorman, and Porta) indicate the name of the authors who proposed the index. The symbol 
# indicates a significant difference vs R with p<0.05. 

 

 

Index R T15 T30 T45 T60 T75 T90 

CIPS 
0.94 

(0.90-1.01) 

0.97 

(0.95-1.03) 

1.00 

(0.96-1.06) 

1.04 

(1.00-1.06) 

1.03 

(0.97-1.04) 

1.00 

(0.96-1.03) 

0.95 

(0.87-1.05) 

NCIPS 
0.41 

(0.39-0.45) 

0.43 

(0.42-0.45) 

0.43 

(0.42-0.46) 

0.46 

(0.43-0.47) 

0.45 

(0.43-0.46) 

0.44 

(0.42-0.46) 

0.42 

(0.40-0.46) 

CCIPS 
4.20 

(3.88-4.37) 

3.90 

(3.59-4.14) 

3.57 

(3.28-3.93) 

3.15
#
 

(2.63-3.59) 

2.99
#
 

(2.61-3.34) 

2.87
#
 

(2.32-3.18) 

2.63
#
 

(2.16-3.26) 

NCCIPS 
1.84 

(1.76-1.91) 

1.71 

(1.59-1.82) 

1.61 

(1.44-1.71) 

1.38
#
 

(1.15-1.60) 

1.39
#
 

(1.17-1.44) 

1.25
#
 

(1.08-1.41) 

1.14
#
 

(0.95-1.42) 

CIRM 
2.19 

(2.03-2.37) 

2.05 

(1.78-2.13) 

1.88 

(1.70-2.00) 

1.73
#
 

(1.49-1.88) 

1.55
#
 

(1.10-1.69) 

1.54
#
 

(1.26-1.64) 

1.55
#
 

(1.14-1.71) 

NCIRM 
1.01 

(0.96-1.08) 

0.95 

(0.82-0.98) 

0.87 

(0.78-0.94) 

0.80
#
 

(0.71-0.87) 

0.73
#
 

(0.55-0.81) 

0.70
#
 

(0.60-0.75) 

0.69
#
 

(0.53-0.82) 

CIP 
1.17 

(1.12-1.30) 

1.13 

(1.08-1.19) 

1.00 

(0.91-1.14) 

0.91
#
 

(0.83-1.01) 

0.87
#
 

(0.81-0.99) 

0.87
#
 

(0.74-0.91) 

0.85
#
 

(0.75-0.96) 

NCIP 
0.81 

(0.71-0.85) 

0.72 

(0.70-0.76) 

0.66
#
 

(0.62-0.73) 

0.64
#
 

(0.55-0.68) 

0.58
#
 

(0.52-0.64) 

0.54
#
 

(0.51-0.60) 

0.57
#
 

(0.52-0.66) 
 

Porta A et al, J Appl Physiol, 103:1143-1149, 2007  



Global linear regression (GLR) analysis of  

entropy-based complexity indexes on tilt angles  

Yes/No = presence/absence of a significant global  

linear correlation.  

 

Index GLR GLR (up to T75) 

CIPS No No 

NCIPS No No 

CCIPS Yes Yes 

NCCIPS Yes Yes 

CIRM Yes Yes 

NCIRM Yes Yes 

CIP Yes Yes 

NCIP Yes Yes 

 

Porta A et al, J Appl Physiol, 103:1143-1149, 2007  



Correlation coefficient of global linear regression (GLR)  

of entropy-based complexity indexes on tilt angles  

rGLR = global correlation coefficient.  

Porta A et al, J Appl Physiol, 103:1143-1149, 2007  

 

Index rGLR rGLR (up to T75) 

CIPS - - 

NCIPS - - 

CCIPS -0.68 -0.71 

NCCIPS -0.69 -0.72 

CIRM -0.63 -0.66 

NCIRM -0.63 -0.65 

CIP -0.66 -0.70 

NCIP -0.70 -0.77 

 



Individual trends of entropy-based complexity indexes  

based on ApEn  

Porta A et al, J Appl Physiol, 103:1143-1149, 2007  



Individual trends of entropy-based complexity indexes  

based on CApEn 

Porta A et al, J Appl Physiol, 103:1143-1149, 2007  



Individual trends of entropy-based complexity  

indexes based on SampEn 

Porta A et al, J Appl Physiol, 103:1143-1149, 2007  



Individual trends of entropy-based complexity  

indexes based on CCE 

Porta A et al, J Appl Physiol, 103:1143-1149, 2007  



Individual linear regression (ILR) analysis of  

entropy-based complexity indexes on tilt angles  

ILR% = fraction of subjects with significant individual 

linear correlation;  = quantization levels.  

Porta A et al, J Appl Physiol, 103:1143-1149, 2007  

 

Index ILR%  ILR% (up to T75) 

CIPS - - 

NCIPS - - 

CCIPS 82 82 

NCCIPS 82 82 

CIRM 82 76 

NCIRM 82 71 

CIP (q=5) 65 47 

NCIP (q=5) 59 65 

CIP (q=6) 71 47 

NCIP (q=6) 65 59 

CIP (q=7) 82 53 

NCIP (q=7) 76 65 
 



Conclusions 

Approximate entropy was unable to follow the progressive 

decrease of complexity of short-term heart period variability 

during graded head-up tilt 

 

Entropy-based indexes of complexity, when computed 

appropriately by correcting the bias that arises from their 

evaluation over short sequences, progressively decrease as a 

function of tilt table inclination 

 

These indexes appear to be suitable to quantify the balance 

between parasympathetic and sympathetic regulation 



Effects of pharmacological challenges on  

entropy-based complexity of short-term  

heart period variability 



Introduction 

Pharmacological protocol allows a selective blockade of the 

vagal or sympathetic branch of autonomic nervous system  

 

Challenges can be combined as well to obtain a double 

blockade of both vagal and sympathetic branches  

 

This protocol could allow to better relate complexity to the 

functioning of one of the two branches of the autonomic 

nervous system  



Experimental protocol 

9 healthy humans (age from 25 to 46) 

We recorded ECG (lead II) and noninvasive finger blood pressure  

(Finapress 2300). Respiratory series was obtained by assessing 

respiratory-related amplitude changes of the ECG 

 

Experimental sessions were performed in 3 days: 

i)   on day 1 after parasympathetic blockade with atropine sulfate (AT)  

      to block muscarinic receptors;  

ii)  on day 2 after -adrenergic blockade with propranolol (PR) to  

      block 1 cardiac and 2 vascular peripheral adrenergic receptors;  

iii) on day 1 PR was administered at the end of the AT session  

      to combine the effect of AT and PR (AT+PR);  

iv) on day 3 after centrally block the sympathetic outflow to heart  

     and vasculature with clonidine hydrochloride (CL). 



Entropy-based complexity indexes during  

pharmacological blockade 

Values are expressed as median (first quartile – third quartile).  

CCE = corrected conditional entropy; CApEn = corrected approximate entropy; SampEn = sample entropy;  

B = baseline; AT = atropine; PR = propranolol; AT+PR = atropine plus propranolol; CL = clonidine.  

The symbol * indicates a significant difference (p<0.05) vs B. 

 

 

 

 

Table 5. Complexity indexes (CIs) and normalized CIs (NCIs) assessed over HP series 

 B AT AT+PR PR CL 

CICCE 
1.19 

(1.07-1.28) 

0.62* 

(0.60-0.72) 

0.91 

(0.87-1.11) 

1.19 

(1.07-1.29) 

1.39 

(1.23-1.44) 

NCICCE 
0.77 

(0.74-0.81) 

0.40* 

(0.36-0.45) 

0.64 

(0.55-0.67) 

0.79 

(0.78-0.89) 

0.83 

(0.82-0.86) 

CICApEn 
4.15 

(3.80-4.38) 

1.79* 

(1.45-1.90) 

3.20* 

(2.84-3.68) 

4.21 

(3.80-4.44) 

4.60 

(4.31-4.71) 

NCICApEn 
1.81 

(1.64-1.92) 

0.80* 

(0.64-0.86) 

1.39* 

(1.26-1.60) 

1.84 

(1.71-1.96) 

2.01 

(1.89-2.05) 

CISampEn 
2.14 

(1.99-2.27) 

1.13* 

(0.92-1.29) 

1.73* 

(1.53-1.81) 

2.16 

(1.83-2.39) 

2.41 

(2.25-2.57) 

NCISampEn 
0.99 

(0.91-1.02) 

0.55* 

(0.43-0.60) 

0.79* 

(0.73-0.85) 

1.01 

(0.85-1.09) 

1.08 

(1.03-1.19) 

 

Values are expressed as median (first quartile – third quartile).  

CCE = corrected conditional entropy; CApEn = corrected approximate entropy; SampEn = sample entropy; B = baseline; AT = atropine; PR = 

propranolol; AT+PR = atropine plus propranolol; CL = clonidine. The symbol * indicates a significant difference (p<0.05) vs B. 

 

 
Porta A et al, Physiol Meas, 34:17-33, 2013  



Linear correlation analysis between entropy-based  

complexity indexes during pharmacological blockade 

 

 

 

 

Table 1. Linear correlation analysis between complexity indexes (CIs) derived from HP series. 

 CICCE CICApEn CISampEn CIKNNCE 

CICCE  0.844 0.805 0.973 

CICApEn 4.50
.
10

-17
  0.967 0.850 

CISampEn 1.58
.
10

-14
 1.96

.
10

-35
  0.803 

 

Correlation coefficient, r, and probability of type I error, p, are above and below the main diagonal respectively. 

CCE = corrected conditional entropy; CApEn = corrected approximate entropy; SampEn = sample entropy. 

 

 

Correlation coefficient, r, and probability of type I error, p, are above and below the main diagonal respectively. 

CCE = corrected conditional entropy; CApEn = corrected approximate entropy; SampEn = sample entropy  

Porta A et al, Physiol Meas, 34:17-33, 2013  



Linear correlation analysis between entropy-based  

normalized complexity indexes during  

pharmacological blockade 

Correlation coefficient, r, and probability of type I error, p, are above and below the main diagonal respectively. 

CCE = corrected conditional entropy; CApEn = corrected approximate entropy; SampEn = sample entropy  

 

 

 

 

 

Table 2. Linear correlation analysis between normalized complexity indexes (NCIs) derived from HP series. 

 NCICCE NCICApEn NCISampEn NCIKNNCE 

NCICCE  0.947 0.908 0.971 

NCICApEn 1.09
.
10

-29
  0.950 0.947 

NCISampEn 3.54
.
10

-23
 2.11

.
10

-30
  0.904 

 

Correlation coefficient, r, and probability of type I error, p, are above and below the main diagonal respectively. 

CCE = corrected conditional entropy; CApEn = corrected approximate entropy; SampEn = sample entropy. 
 

 

 

Porta A et al, Physiol Meas, 34:17-33, 2013  



Conclusions 

Entropy-based indexes correcting the bias that arises from 

their evaluation over short sequences are equivalent in 

assessing  complexity of heart period variability  

 

Pharmacological protocol confirms the involvement of the 

autonomic nervous system is modulating the entropy-based 

complexity of heart period variability 

 

Since vagal blockade reduces complexity, while sympathetic 

blockade (central or peripheral) does not affect it, it can be 

concluded that complexity of heart period variability is under 

vagal control 



Entropy-based complexity of short-term heart period 

 variability: comparison between coarse graining and  

ranking approaches 



Introduction 

CApEn, SampEn and CCE are based on coarse graining  

 

 

Entropy-based complexity indexes based on ranking do  

not require coarse graining  

 

 

Comparison between coarse graining and ranking approaches 

is needed to better understand the possibility offered by 

entropy-based complexity indexes based on ranking 



Entropies based on coarse graining 

RR(i) 

RR(i-1) 

RR(i-2) 

L=3 

RR(i) 

RR(i-1) 

RR(i-2) 

L-dimensional embedding space is 

coarse grained with hyper-spheres  

of radius r 

L-dimensional embedding space is  

coarse grained with hyper-cubes of 

side e 

CApEn and SampEn  CCE  

r 

e 



Permutation entropy 

Permutation entropy is based on ranking procedure 

 

 

Main advantages are: 

 

1) Coarse graining is avoided 

 

2) Calculation can be rendered very fast via sorting procedure  

 

3) Unbiased by the presence of outliers  

 

4) Invariant with respect to non linear monotone transformation 



Permutation entropy 

Permutation entropy is based on the transformation 

f:  RRL(i)         rL(i) 

where rL(i) = (rank(RR(i)), rank(RR(i-1)), …, rank(RR(i-L+1))) 

and rank of each sample is assessed inside the set of samples 

forming RRL(i) 

rL(i) corresponds to one of the possible L! permutations of (1, 2, …, L) 

If equal values of RR are present, leading to tied rank, they are  

considered all different according to their diverse occurrence  

in time 



Permutation entropy and permutation conditional 

entropy 

permutation entropy (PE) of order L with L≥2 is 

p(rL(i)) =  
N-L+1 

number of i with i=1,…,N-L+1 | rL(i) is found in rL 

and permutation conditional entropy (PCE) of order L with L≥3 is 

PE(L) = -Sp(rL(i)) 
.

 log(p(rL(i))) 

PCE(L) = PE(L)-PE(L-1) 

Given the series of pattern rL
 = rL(i), i=1,...,N-L+1 and defined as   



Normalized permutation entropy and normalized  

permutation conditional entropy 

where log(L!) is the PE(L) in the case of uniform distribution  

of the L! permutations 

NPE(L) =  
log(L!) 

PE(L) 

The normalized PCE is 

NPCE(L) = NPE(L)-NPE(L-1) 

The normalized (PE) is  



Comparison between entropy-based complexity indexes 

derived from CCE and PE 



Comparison between entropy-based complexity indexes 

derived from CCE and PCE 



Conclusions 

Entropy-based complexity indexes based on ranking are 

less powerful than those based on coarse graining techniques 

in detecting changes of the state of the autonomic nervous 

system   


